2023/11/24 20:35:22

Энергонезависимая память
NVRAM, Non Volatile Random Access Memory

Энергонезависимая память (англ. Non Volatile Random Access Memory, сокращенно NVRAM) — разновидность запоминающих устройств с произвольным доступом, которые способны хранить данные при отсутствии электрического питания.

Содержание

2023: Найден перспективный магнитный материал для создания энергонезависимой памяти со сверхвысокой плотностью хранения данных

Ученые из МФТИ вместе с французскими коллегами обнаружили материал, намагниченность которого может быть надежно зафиксирована на нескольких промежуточных значениях. Это открывает дорогу к созданию энергонезависимой памяти для жестких дисков со сверхвысокой плотностью хранения информации. Исследование опубликовано в журнале Small Methods. Об этом 22 ноября 2023 года сообщили представители МФТИ.

Как сообщалось, несмотря на активное использование твердотельных накопителей в качестве памяти для компьютеров, жесткие диски на основе магнитной памяти все еще остаются довольно распространенными благодаря своей дешевизне и надежности. В их основе лежит кодирование битов (нулей или единиц) с помощью правильного намагничивания доменов — небольших участков на рабочей поверхности жесткого диска.

Сама по себе намагниченность — это продукт ориентации огромного числа атомных спинов. Ноль и единица в домене достигаются тогда, когда все спины ориентированы либо вверх, либо вниз. Вместе с тем допустимы и промежуточные варианты, когда в нужном направлении «смотрит» лишь часть спинов. Такой подход позволил бы кодировать в одном домене более одного бита, что оптимизировало бы информационную емкость жестких дисков.

Чтобы реализовать эту идею на практике, требуются материалы, в которых промежуточные состояния намагниченности устойчивы, в противном случае память лишится надежности. Ученые из Центра перспективных методов мезофизики и нанотехнологий МФТИ и их коллеги из нескольких французских институтов в своих поисках обратили внимание на соединение BaFe2(PO4)2, которое они назвали просто BFPO. Этот материал демонстрирует стабильность доменных стенок после заморозки ниже 15 кельвинов. При такой температуре происходит фазовый переход от мягкого магнита к супертвердому. В последнем случае домены стабилизируются настолько сильно, что для их перемагничивания требуется магнитное поле более 14 тесла.

Так происходит из-за того, что BFPO — это квазидвумерный изинговый ферромагнетик. Материал можно представить в виде слоев, в пределах которых спины атомов демонстрируют коллективные упорядочивания. Такая структура дарит материалу сильную магнитную анизотропию, то есть различный отклик в зависимости от направления приложенного магнитного поля. Отличительная особенность BFPO заключается в очень узких доменных стенках. Чтобы убедиться в этом, физики исследовали образцы с помощью магнито-силовой микроскопии при различных температурах и магнитных полях. Как и предсказывали расчеты, доменная структура при этом представляет собой совокупность полос, образующих причудливый лабиринт.

Доменная структура материала при различных температурах и магнитном поле 0,5 тесла.

«
Мы в нашем центре обладаем целым рядом методик, одна из которых — криогенная магнитно-силовая микроскопия. Эта методика позволила однозначно охарактеризовать данный материал. Мы впервые продемонстрировали его доменную структуру и ее динамику при воздействии внешнего магнитного поля и температуры. Нужно отметить, что во Франции такого исследования провести не удалось. Но и нам пришлось серьезно потрудиться: исследованные кристаллы имеют микроскопические размеры, и для изучения приходилось их помещать на специально подготовленную подложку микроманипулятором. Также они являются изоляторами, что приводит к скоплению электрического заряда на их поверхности и дополнительному, для нас вредному, взаимодействию с кантилевером. Материал имеет различные физические свойствами. Необходимо подумать о возможном применении в микроэлектронике.

рассказал Василий Столяров, директор Центра перспективных методов мезофизики и нанотехнологий МФТИ
»

Василий Столяров, директор Центра перспективных методов мезофизики и нанотехнологий МФТИ

Температура, при которой удалось добиться проявления некоторых свойств материала, некомфортна для его широкого применения, но стоит отметить возможное использование его в сверхпроводящей цифровой и квантовой электронике, где на ноябрь 2023 года стоит острая проблема криогенной энергонезависимый памяти.

2019: Прорыв ученых из МФТИ в создании энергонезависимых ячеек памяти

27 ноября 2019 года Московский физико-технический институт (МФТИ) сообщил TAdviser о том, что группа исследователей из лаборатории функциональных материалов и устройств для наноэлектроники МФТИ и коллеги, работающие в Германии и США, совершили прорыв на пути к созданию неизвестных типов энергонезависимых ячеек памяти. Ученым удалось создать методику измерения распределения электрического потенциала внутри так называемого сегнетоэлектрического конденсатора — основы элементов памяти будущего, которые будут работать на порядок быстрее существующих на ноябрь 2019 года флешек или твердотельных дисков и выдерживать в миллион раз больше циклов перезаписи. Подробнее здесь.

Смотрите также