Название базовой системы (платформы): | Искусственный интеллект (ИИ, Artificial intelligence, AI) |
Разработчики: | Intel, Массачусетский технологический институт (MIT) |
Дата премьеры системы: | 2020/07/31 |
Отрасли: | Информационные технологии |
Технологии: | Средства разработки приложений |
Основные статьи:
- Доказательное программирование
- Логическое программирование
- Нейросети (нейронные сети)
- Машинное обучение (Machine Learning)
2020: Анонсирование системы машинного программирования MISIM
31 июля 2020 года Intel представила автоматическую систему машинного программирования Machine Inferred Code Similarity (MISIM), которая способна распознавать, для чего предназначена та или иная часть программного продукта. Для этого система изучает структуру исходного кода и анализирует код программ с аналогичными свойствами. Точность MISIM до 40 раз превосходит современные системы проверки кода. Решение может использоваться для широкого спектра задач — от рекомендаций по программированию до автоматического исправления ошибок. MISIM была разработана Intel совместно с Массачусетским технологическим институтом (MIT) и Технологическим институтом Джорджии.
Создание систем точного выявления схожего кода пока что остается нерешенной проблемой. Современным компьютерам по-прежнему крайне сложно определять степень схожести двух фрагментов программы на основе анализа их исходного кода, а также понимать, что оба фрагмента выполняют одни и те же функции . Система MISIM способна наиболее точно определять, когда два фрагмента исходного кода выполняют аналогичные вычисления, даже если они имеют разные алгоритмы и структуру данных.
Ключевое отличие MISIM от существующих систем определения схожего кода — это контекстно-зависимая семантическая структура (contest-aware semantic structure, CASS). Цель CASS — определить, для чего предназначен тот или иной фрагмент кода. Она может быть настроена на определенный контекст — это позволяет ей эффективнее собирать информацию, описывающую код.Метавселенная ВДНХ
Как только структура кода интегрируется в CASS, несколько нейронных сетей оценивают степень сходства двух фрагментов на основе задач, которые они должны решать. То есть, если две части кода выглядят разными по структуре, но выполняют одни и те же функции, нейросети оценят их как схожие.
Другая особенность MISIM заключается в том, что она не использует компилятор. Это позволяет системе анализировать неполные фрагменты кода, которые находятся в процессе разработки, что является одним из важнейших свойств для реализации системы подсказок и автоматического исправления ошибок.
Объединив все эти подходы в единую систему, исследователи Intel, MIT и Технологического института Джорджии выяснили, что MISIM позволяет до 40 раз точнее идентифицировать схожие фрагменты кода, чем другие существующие сегодня решения.
В настоящее время MISIM находится в стадии доработки, однако, проект уже перешел от исследовательской стадии к демонстрационным моделям. Они должны реализовать механизм рекомендаций к исходному коду для программистов, которые создают приложения, работающие в гетерогенных архитектурах. Такая система сможет распознавать задачи разрабатываемого алгоритма непосредственно в процессе его создания и предлагать семантически схожие, но более эффективные варианты его реализации. [1]
Подрядчики-лидеры по количеству проектов
Солар (ранее Ростелеком-Солар) (46)
Финансовые Информационные Системы (ФИС, FIS, Финсофт) (15)
Форсайт (11)
Axiom JDK (БеллСофт) ранее Bellsoft (10)
Бипиум (Bpium) (10)
Другие (387)
Солар (ранее Ростелеком-Солар) (8)
Финансовые Информационные Системы (ФИС, FIS, Финсофт) (4)
Консом групп, Konsom Group (КонсОМ СКС) (2)
ЛАНИТ - Би Пи Эм (Lanit BPM) (2)
IFellow (АйФэлл) (2)
Другие (30)
Солар (ранее Ростелеком-Солар) (10)
Banks Soft Systems, BSS (Бэнкс Софт Системс, БСС) (3)
Форсайт (3)
Cloud.ru (Облачные технологии) ранее SberCloud (2)
КРИТ (KRIT) (2)
Другие (13)
Распределение вендоров по количеству проектов внедрений (систем, проектов) с учётом партнёров
Солар (ранее Ростелеком-Солар) (2, 48)
Microsoft (41, 47)
Oracle (49, 26)
Hyperledger (Open Ledger Project) (1, 23)
IBM (33, 18)
Другие (588, 302)
Солар (ранее Ростелеком-Солар) (1, 8)
Финансовые Информационные Системы (ФИС, FIS, Финсофт) (1, 4)
Microsoft (4, 3)
Oracle (2, 3)
SAP SE (2, 2)
Другие (16, 19)
Солар (ранее Ростелеком-Солар) (1, 11)
Banks Soft Systems, BSS (Бэнкс Софт Системс, БСС) (1, 3)
Форсайт (1, 3)
Cloud.ru (Облачные технологии) ранее SberCloud (1, 2)
Сбербанк (1, 2)
Другие (9, 9)
Солар (ранее Ростелеком-Солар) (1, 6)
Unlimited Production (Анлимитед Продакшен, eXpress) (1, 6)
МТС Exolve (Межрегиональный ТранзитТелеком, МТТ) (1, 4)
Мобильные ТелеСистемы (МТС) (1, 4)
SL Soft (СЛ Софт) (1, 3)
Другие (14, 24)
Мобильные ТелеСистемы (МТС) (2, 3)
Unlimited Production (Анлимитед Продакшен, eXpress) (1, 3)
Солар (ранее Ростелеком-Солар) (1, 3)
МТС Exolve (Межрегиональный ТранзитТелеком, МТТ) (1, 2)
Т1 Консалтинг (Т1 Инновации) (1, 1)
Другие (11, 11)
Распределение систем по количеству проектов, не включая партнерские решения
Solar appScreener (ранее Solar inCode) - 48
Hyperledger Fabric - 23
Windows Azure - 20
FIS Platform - 15
Форсайт. Мобильная платформа (ранее HyperHive) - 12
Другие 322
Solar appScreener (ранее Solar inCode) - 8
FIS Platform - 4
Java - 2
Турбо X - 2
Парадокс: MES Builder - 2
Другие 22
Solar appScreener (ранее Solar inCode) - 11
Форсайт. Мобильная платформа (ранее HyperHive) - 3
BSS Digital2Go - 3
Cloud ML Space - 2
Kubernetes - 1
Другие 8